
Chiral s~p~o~d~ are versatile shoe which can be off to a large variety of ail 

products, aad have been widely used in ~~rnet~c s~thesis’ . As a part of a program directed towards 
developing an mimetic approach to ~uor~ubstitut~ organic molecules we have prepared build~g 
blocks already possessing fluorine atoms and a sulphinyl group as c&al auxilia$. Several optically pure 
~~o~~bs~to~ and ~l~-fu~ion~~ open-chzdn compmmds and a number of oxygen he%er~~y&~ have 
been obtained by properly elabomttig those safe, In o&er to have Bccess to highly fan and 
selectively ~u~~na~d carboqclic ~~nnds in optically pure form we though that radical Eactions on 
approp~ate ~uo~sulphinyl chirons could be used. In fact it is known that eyclopentane and cyclohexane 
ring systems form p~do~n~tly from S-hexenyl and fi-heptenyl radicals4. Therefore the chlor~i~uoro 
compounds 4 and 5, which could be useful substrates for generating difluoroal~l radicals by halogen 

abstraction and for testing the ~~rn~t~c induction in radical promoted cyclizations to ~~~s~b~itu~ 
cyclohexane8, have been prepared as reported on Scheme 1, 

The lithim derivative of (~)-(4-me~yl~yl)~~t-4-en~~-yl sulphoxide [I), prepared following 
the Andersen procedure, was aqlated with ethyl c~u~i~u~~ (2) and gave I -chloro- 1 ,l -difhmro- 
3”[(4-m~ylph~yl)~lp~yl]~t-6-en-2-~ (3) in fair yields but as a mixture of the k&n smd hydrate 
forms of the two {3&R& and (3S,R& epimers. The crude ~-k~~ph~~ 3 were mduced with sodium 
borohydride in methanol to give a mixture of the corresponding secondary alcohols 4*. On flash 
chromatography of the reaction mixture (2R,3R,Rs)- 1 -chloro- I ,l -difluoro-3- [f4- 
~~ph~yl)s~~myl~e~-~-~-2-o1(4) and the @S,3S&)-4 epimer wem selauated in o@ically pure 
form by eluting with ~lohe~/~yl acetate mixtmes, while the (2&3&R&4 ep&r was obtained by 
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eluting with chloroform/ethyl acetate7. The absolute configuration at the hydroxy-bearing carbon atom of 
the alcohols 4 was established through ‘H NMR analysis of the esters obtained by reacting the 
correspondii sulphenyl alcohols 5 with (R)- and (a-2-phenylpropionic acids, as already done for related 
compoundP. The corresponding l-chloro- 1,1-difluoro-3-[(4-methylphenyl)sulphenyl]hept-6-en-2-ols 
(!I)“. having the (2R,3R), (2&3s), and (2R,3S) configurations, were obtained in nearly quantitative yields 
by deoxygenating the corresponding sulphinyl derivatives 4 to the sulphur atom with sodium iodide and 
trifluoroacetic anhydride’ ’ . 

Scheme 1 

Chlorodifluoro compounds 4 and 5 are suitable substrates for radical chemistry. Difluoroalkyl radicals 
can he easily generated by the tributyltin hydride method, because, as already kn~wn’~. the carbon-chlorine 
bond is quite reactive toward the nucleophilic tributyltin radical, and even more when electron-withdrawing 
groups are present close to it, as in the present case, while carbon-fluorine bonds are totally inert. The 
individual steps for the chain reaction when substrates 4 are submitted to radical cyclization (tributyltin 
hydride and azobisisobutyronitrile in oxygen-free benzene at 70°C) are reported on Scheme 2. 
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Scheme 2 

Tributyltin radical selectively abstracts the chlorine atom from substrates 4 affording difluoroalkyl 
radical 6, which attacks the terminal double bond in an exe-cyclization, forming the primary 
cyclohexylmethyl radical 7. Intramolecular trapping by ttibutyltin hydride gives the final products 8 and 
tributyltin radical, which starts a new cycle. The reaction goes to completion over a period of about five 
hours at 70’ C. Under those reaction conditions no racemization of the sulphinyl group, or extensive &- 
elimination occurred. Furthermore the cyclization step is fast enough in order to avoid reduction of the 
intermediate difluoroalQ1 radical 6 by tributyltin hydride. 

It is noteworthy that asymmetric induction for cyclization of sulphinyl heptenols (2R,3R&)-4 and 
(2S,3S,Rs)-4 is very high; in fact cyclohexanes (lR,2S,4R,R,)-8 and (1S,2R,4S,Rs)-g were the only 
diastereoisomers isolated from the reactions. The high stereoselectivity may he explained by a particularly 
favorable geometry on the transition state, in which the incipient cyclohexane ring shows the bulkier polar 
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sulphinyl substituent in quasi-equatorial position, and contemporary the vicinal hydroxy group in quasi- 
axial position. That spatial arrangement is a particularly favourable one for vicinal sulphinyl and hydroxy 
substituents on six-membered ring systems 13. Thus the methyl group would be equatorially disposed in 
order ta avoid 1.3~diaxial interaction with the preexisting hydroxyl substituent. On the contmry, cyclixation 
of the sulphinyl he$tenol(2R,3S,Rs)-4 afforded a 62 to 38 mixture of the twu possible diestereoisomers, 
as a consequence of the absence of 1,3-diaxial interactions in an incipient cyclohexane ring having both 
vicinal substituents in equatorial position. 

Yields, physical and selected ‘9 IWiR data of products 8 are reported on Table. 

Table. Asymmettic cyclization of compounds 4 

Substrate product 

Yields 
6;) [all’ 

Selected ‘gFNMR 
data (+I. ppm) 

M. p. (‘C) 
(solvent)~ FW pax 

(2R,3R,R&4 (lR.Zr,4R.Q-8 41 t245.1 MS-187 -113.6 -125.4 
(c 1 .O, CHCLJ ww 

(2S,3S,R&4 (lS,2R,AT.R&8 52 t 133.7 204-205 -113.08 -125.01 
(c 1 .O, CHCLJ WB) 

(2R,3S,RJ-4 (1S.2S,4S.Rs)-8 49 t217.3 176-177 -113.94 -135.77 

(c 1.1, CHC&) (B) 

(lSJS,4R,R&8 30 t 190.5 173-174 -113.24 -116.22 
(c 0.7, CHCl,) (B) 

%ysUization solvent: A, n-hexane; B, diisopropyl ether. 

The structure and the preferred conformation of the title compounds were established by detailed ‘H. 
%, and ‘9 NMR studies, the relative configurations at C-2 and at the newly formed C-4 carbon atoms 
being determined by NOE difference experiments (see Figure). 

(1S,2S,4S,Rs)-8 (1S,2S,4R,Rs)-8 

Figure. Selected NOES and preferred conformations for (lS,2&4S,~)- and (lG!S,4i?,~)-8 epimers. 

The difluorocyclohexanols 8 are currently subjected to a number of transformations to investigate 
their synthetic potential. The results of this study will be published in due time. 
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